美国斯坦福大学的一个 AI 团队疑似抄袭、「套壳」一家中国大模型公司的开源成果,模型架构与代码完全相同。
5 月 29 日,斯坦福大学的一个研究团队发布了一个名为「Llama3V」的模型,号称只要 500 美元(约等于人民币 3650 元)就能训练出一个 SOTA 多模态模型,且效果比肩 GPT-4V、Gemini Ultra 与 Claude Opus 。
由于该团队的作者(Mustafa Aljaddery、Aksh Garg、Siddharth Sharma)来自斯坦福,又集齐了特斯拉、SpaceX、亚马逊与牛津大学等机构的相关背景经历,很快该模型发布的推特帖子浏览量就已经超过 30 万,转发 300+次,并迅速冲到了 Hugging Face 首页?
紧接着,6 月 2 日,有网友在 Llama3V 的 Github 项目下抛出事实性质疑,但很快被 Llama3V 的团队删除。为此,提出质疑的网友被激怒暴走,跑到了 MiniCPM-V 的 Github 页面进行事件还原,提醒面壁智能团队关注此事。
随后,面壁团队通过测试 ,发现 Llama3V 与 MiniCPM-Llama3-V 2.5 在「胎记」般案例上的表现 100% 雷同,「不仅正确的地方一模一样,连错误的地方也一模一样」。
不过,好心网友对 Llama3V 作者团队的回应并不买单,而是在 Llama3V 的 Github Issue 上发布了一系列质疑,列举具体 4 点证据,但很快被 Llama3V 的团队删除。幸好作者事先截了图保留...
但根据网友的复盘、梳理,Llama3V 并非只是简单的借鉴,而是有 4 点证据能充分表明其「套壳」了 MiniCPM-Llama3-V 2.5。
Llama3-V 的代码是通过对 MiniCPM-Llama3-V 2.5 的代码进行格式调整和变量重命名得到的,包括但不限于图像切片方式、tokenizer、重采样器和数据加载。
作者回应删除 Hugging Face 仓库的原因是「修复模型的推理问题」,并称他们「尝试使用 MiniCPM-Llama3 的配置,但并没有用」!
戏剧效果拉满的是,该网友随后贴出了如何使用 MiniCPM-Llama3-V 的代码,跑通 Llama3V 模型推理的详细步骤。
Perceiver重采样器是一个单层的交叉注意力机制,而不是两层自注意力机制。SigLIP 的 Sigmoid 激活函数并未用于训练多模态大型语言模型,而仅用于 SigLIP 的预训练。
6 月 2 日下午,该事件开始在推特上发酵,MiniCPM-V 的作者亲自发帖,表示「震惊」,因为斯坦福的 Llama3V 模型居然也能识别「清华简」。
据 AI 科技评论向面壁团队了解,「清华简」是清华大学于 2008 年 7 月收藏的一批战国竹简的简称;识别清华简是 MiniCPM-V 的「胎记」特征。该训练数据的采集和标注均由面壁智能和清华大学自然语言处理实验室团队内部完成,相关数据尚未对外公开。
以下是面壁团队成果与 Llama3V 对「清华简」的识别对比。结果显示,两个模型不仅正确的地方一模一样、错误的地方也雷同?
此外,Llama3V 的 OCR 识别能力在中文字上也与 MiniCPM-Llama3-V 2.5 高度相似。对此,面壁团队表示,他们很好奇斯坦福团队是如何只用「500 美元就能训练出这么高深的模型性能」。
根据公开信息显示,Llama3V 的两位作者 Siddharth Sharma 与 Aksh Garg 是斯坦福大学计算机系的本科生,曾发表过多篇机器学习领域的论文。
同时,也反映出,中国科研团队的开源大模型实力已经冲出国门,逐渐被越来越多国际知名的机构与开发者所关注、学习。
由此可见,今后看客们审视国内外的大模型技术实力对比,应该多一份民族自信、少一点崇洋,将关注度多聚焦在国内的原创技术上。雷峰网。
